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A SYMPLECTIC COHERENT BEAM-BEAM MODEL' 

M. A. Furman 
sse Central Design Group· and LBL Exploratory Studies Group 

Lawrence Berkeley Laboratory 
Berkeley. CA 94720 

\·Vc consider a simple one-dimensional model to study the ef
fects of the beam-beam force on the coherent dynamics of collid
ing beams. The key ingredient is a linearized beam-beam kick. 
We study only the quadrupole modes, with the dynamical vari
ables being the 2nd-order moments of the canonical variables 
q, p. Our model is self-consistent in the sense that no higher
order moments are generated by the linearized beam-beam kicks, 
ami that the only source of violation of sympledicily is the radia
tion. '\'e discuss the round beam case only, in which vertical and 
horizontal quantities are assumed to be equal (though they may 
be different in the two beams). Depending on the values of the 
tune and beam intensity, we observe steady states in which oth
erwise identical bunches have sizes that are equal, or unequal, or 
periodic, or behave chaotically from turn to turn. Possible impli
cat ions of luminosity saturation with increasing beam intensity 
are discussed. Finally, we present some preliminary applications 
to an asymmetric collider. 

Introduction 

The study of the coherent modes of oscillation of colliding 
beams has a long history, with many contributions to this im
pot·tant and difficult problemi space limitations prevent us from 
giving here a full set of references [1]. A while ago Hirata [2J 
proposed a simplified model to study the problem including the 
essential coupled-beam features , but is in principle inconsistent 
with Vlasov's equation because it assumes a bunch distribution 
that remains Gaussian at all times. However , it explains quali
tati vely the "flip-flop" effect and the saturation of the luminos
ity and beam-beam parameter at high intensity. Furthermore, 
a Gaussian bunch shape is generally accepted as being a good 
approximation to a self-consistent solu tion, so the numerical re
sults from this model may be reasonable despite the t heoreti
cn l inconsistcncYi in fact, a more recent [3J approximation which 
takes into account higher-order moments improves the agreement 
with ll1ultiparticle simulations. We summarize here the results 
of a simpler model [4J, defined along similar lines, that has the 
virtue of heing fully self-consistent (i. e., symplec tic in the ab
sence of radiation, with Gaussian beams remaining Gaussian) 
sillce it involves the essential ingredient of a linearized beam
beam force. Several of the features are derived analytically. The 
consistency with Vlasov's equation is achieved at the price of ig
nori ng lvlaxwell 's equations altogether, since the force is assumed 
to be linear at all distances whi le the bunch size is finite. This 
is clearly not a good approximation for any reasonable distri
imtion. However , since we study only the quadrupole modes of 
beams that collide hea~ on, the linear part of the force has the 
most important effect, and in this sense it is reasonable to make 
such an approximation. By comparing our results with Hirata's 
we hope to determine those features that are generic to this type 
of model. 
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Model (symmetric case) 

Ingl'edients 

'Ve consider a collider composed of two riugs with identical 
linear lattices and common tune "0, a single interaction point, 
and one bunch per beam with the same number of particles N 
and same energy. '-""e label them the e+ and e- bunches, al 
though our discussion allows for like-charged beams (e±e±) just 
as well. The bunches collide head-on. Vve consider only the dy
namics in one dimension, say the vertical, described by y, y' , 
and define the normalized coordinates q, p for a particle in each 
beam as q± ;: Y±/..(iJ; and 1'± ;: (/3,y'± + ",y±)/..(iJ;. Nole 
that /3y is the IIbare" lattice function , i.e., it does not include 
any corrections due to the beam-beam interaction. 'We represent 
the be&m-beam interaction by the linearized kick 

(1 ) 

where k± is the dimensionless strength of the kick, 

(2) 

This is the olily source of coupling and of nonlinearity since the 
strength of the kick on the + beam, A~ _ , depends inversely on the 
size of the opposing bunch, (1_ , which is a dynamical variable, as 
is (1+. In the above '·0 is the classical radius of the particle, i the 
usual relativistic factor and f± the kick's focal length. The 
sign in front of k';f in Eq. (1) implies the convention that kT > 0 
for attractive kicks (opposite-charged beams). '¥e consider here 
only the extreme case of round-beam shape, (lr- = (ly == (I. In 
terms of the nominal beam-beam parameter ~o, we have 

(3) 

where EO and (10 are the nominal , equilibrium emittance and beam 
size (we assume that /3r- = /3y == /3 and Er-O ::;: EyO == EO for 
this round-beam ense) and ~± are the actual, dynamically de
termined, beam-beam parameters. Note that in the weak-beam 
limit ~+ is the tune shift of the - beam and viceversn. The anal
ysis of the flat-beam case, in which k C( 1/(1 rather than l/u2, 
can be carried out analogously[4J . 

Following Hirata 121. we represent the effec t of the synchrotron 
radiation loss and its compensation by the RF cavities by the 
stochastic localized kick 

(4 ) 



where the ,~± arc independent random numbers with (r±) = 
(,~+t_ ) = 0 and (tl) = 1, and ,,\ is related to the damping 
decrement of the ring b by ,,\ = exp( - 26) (we assume the rings 
to have equal damping decrements). The fi rst term in the above 
equation describes t he damping due to the energy loss by radi
ation, and t.he second term the noise induced by the RF cavity 
that res tores the energy to the particle. 

The third and final ingredient is a linear transport through a 
phase advance 271"1/0, given by 

(q±) (C S) (q±) 
1'± = - S C p± 

(5) 

where C = cos(271"f(0) , S = sin(27r11o). 

The bunches undergo collision, transport , radiation, collision , 
etc. T he one-turn map for a given particle has a stochas tic in
homogeneous part arising from the last term in Eq, (4). A 
deterministic (but st ill inhomogeneous) map is obtained for the 
bilinear combinations of q and p and averaging these over all ra
diation events in eacl) bunch. In this way we convert the problem 
into the study of a 6-dimensional map for the second-order mo
ments (3 for each heam) of the bunch distributions, Since the 
beam-beam kick is linear , the second order moments characterize 
the problem completely (assuming head-on collisions) because no 
higher-order moments can be generated. Vlith a surface of sec
tiolL just before the beam-beam kick we find 

(6) 

where the 3 x 3 matr ix JVf(k_,II) depends on (q:)II' /10, ,,\ and ~o 
(there is a simultaneous companion map with + ~ -). In prac
tical cnlcll iations we use the dimensionless moment vectors X == 
«(q~),(q+p+),(I'~))/'o and y " ((q:),(q- p-),(p:))/,o so 
that, with e == (0,0, 1), the full 6-dimensionalone-turn map reaRs 

- , = M (Y.,,,)X,, + (1 - A )e - , 
= M(X.,,, )Y,, + (1 - A )e 

(7) 

The basic dynamicnl physical quan tities that we are interested 
in studying from the map arc the beam sizes u± and emittances 
f± given by 

ai = fJ(qlJ, 
,i = M) ( y'~) _ (y±y~)' 

= (qlJ (pi) - (m±l' 

(8) 

from which we can extract "observables" such as the luminos
ity and the beam-beam parameters ~±, relative to their nominal 
va lues. 

Digress ion on the Radia tion IGck 

The radiation kick , Eq. (4), is constructed so that, if the 
bellin-beam force is turned off, the beam decays exponentially to 
an equilibrium configuration X tq = Y tq = (1,0, 1) which corre
sponds to a beam ellipse that is matched to th~ bare lattice, with 
emittance equal to the nominal value, f = EO. It can be shown 
that this "fixed point!! is ahsolutely stable, i.e. , it is reached 
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from any ini tial state provided only the tune I/O is not too close 
to 0 (how close depends on the damping decrement 0, which 
we assume small) . In the decay process the beam emittance 
changes with every passage through the radiation kick according 
to E,2 = ,,\2f2 + (1 - ,,\2)EO (q2) until it reaches the nominnl equi 
Iibriurp. va lue. We regard this process as a simple physical model 
of the damping that occurs in nn actnal electron storage ring. 

Actually Eq. (4) has been questioned and qlternatives have 
been proposed. Hirata anA Ruggiero !5] propose a kick symmetric 
iq q and I), 

G:) = JA G) + J'o(I-A) c:) (9) 

where ("1) = (fll = 1, (1',) = (r,) = (ftr,) = 0, In the absence 
9fthe beam~beam interaction this form for the radiation kick also 
has an absolutely stable equilibrium configuration X t q = (1,0,1) 
wtlOse emittance has th~ nominal value. An arbitrary initial statr 
decays exponentially to it with the emittance changing at each 
step according to ,.' = A',' + (1 - A)',ij + A(I - A )'o( (q') + (1" ). 

Krishnagopal and Siemann [6J propose a similar express ion, 

where (r.) = (r,) = (," r,) = 0, (,'1) = J (q') / (1") and 
(,'n = J( p' ) / (q' ), This kick is supposed to be used only 
at a symmetry point of the lattice, where (qp) = 0 by symme
try. It differs from the previous expressions in that the noise 
term has a dynamical dependence on the beam. In the absence 
of beam-beam interaction it , too , has an absolutely stable equi
librium state X t q = (1,0, 1) with nominal emittance. An initial 
state with arbitrary emittance decays to it exponentially with a 
turn-by-turn change in the emittance given by E' = AE+(I - "\)fO. 

This equation shows that, if the initial state is not completely 
arbitrary but has an emittance f = fO, then the emittance i" pre-
3Crtled at every turn at it" nominal value. Since the beam-beam 
force is symplectic, this property remains true when the beam
beam interaction is operating. The authors of (10) claim this 
property to be essential, and they use the above expression for 
the kick in multiparticie track ing simulations in which the beams 
have nominal emittance only, which is therefore guaranteed to be 
preserved. 

Our (limited) experience shows that the above three forms of 
the radiation kick yield quali tatively similar results except possi
bly for very intense beams, although the algebraic expressions in 
analytical calculations are qui te different. We adopt the point of 
view that the simpler the model for the radiation kick the better, 
provided only that in the absence of the beam-beam interaction 
the beam should decay from nny initial state to the equilibrium 
state with that is matched to tfte bare I",Uice, which has nominal 
cm,ittance. We regard the emittance flonconseryation of (4) as a 
virtue, since this property emulates the behavior of beams out of 
equiliprium. When the beam-heam force is included our model 
yields a variety of steady-state solu tions, which mayor may not 
be constant in time. The cmittances and beam sizes of these so
lutions are not, in general, equal to their nominal values, and are 
obtained as output quantities. Expression (4) has the additional 
virtue of yielding simple analytic expressions for the period-one 
fixed point . 



Results 

Period-One Fixed Points 

We first seek steady solutions by setting ( .. ')n+l = ( .. '}n in 
(6) for all six moments , which yields a set of two equations for 
(q~) and (q:). I!y defining k+ ;: (,\ + I)x, k- ;: (.\ + I)y, 
p ;: 4.~0/('\ + I) and X ;: cot(2.vo), we obtain 

x/p= I+ 2xy-y', y/ p = I + 2xx - x' (11) 

These equations admit solutions with x = y (equal-size beams, 
or "normal solutions"), and with x o:F y (unequal-size beams, 
or "flip-Hop solutions") which can pe found analytically in a 
straightforward way. J'lote that they depend on Vo and p, but do 
not depend separately on ).; also note that p ex beam intensi ty 
N. Once x and yare found, the specification of the fj,xed point is 
completed by finding the moments (pq) and (p2). These are also 
obtained from Eq. (6), which yields very simple algebraic ex
pressions in terms of (ql). In order to be physical, the solutions 
must be real and have the same sign. 'rhe normal solutions are 
always real: the positive solutions nrc physical for the e+ e-case, 
the negative solutions for the e±e±case. The flip-flop solutions, 
on the other hand, are physical only in certain regions of the 
Vo - p plane, which is shown shaded in Fig. 1. Round beams do 
not admit e±e± flip-flop solutipns, but this not true in the £Iat
beam model, which does admit them [41. In addition to being 
real , the solutions must be stable. This is determined from the 
eigenvalues of the 6 x 6 stability matrix, which is obtained by ex
panding the map infinitesimally close to the fixed point. Results 
for the size and stability of the e+e- case are shown in Fig. 2, 
for the specific case of Vo = 0.15 and fJ = 0.07 (,\ = 0.8694). Tpe 
normal solutions arc stable only in 0 !'5 p ~ 0.3; since ~o ~ p/21r, 

this corresponds to 0 ~ ~o ~ 0.048. Flip-flop sO~4tions q..re real 
ollly in the interval 1 ~ P ~ 2 (O.IQ ~ ~o ~ 0.32) with one beam 
growing in size rapidly as p increases. However, they are stable 
only in the regions I fl ~ p ~ 1.3 and 1.6 ~ P ~ 2. In qlOse 
regions of p where nei ther tbe normal or the flip-flop solutions 
are stable other type of solutions appear, such as higher~order 

fixed points, as we now describe. 

0.4 

0 .3 

Vo 

0.2 

0 .1 

0 .0 
0 0.5 

p=4rr'0!(Hl) 
Fig. !. Region where the round- beam flip~f1op solutions 
are real (though nol necessarily stable). The ete:!: sol
ulions are always complex. 
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Fig. 2. RMS beam sizes and sta.biHty for lhe period~ l 

fixed point solutions (solid=stable, dots=unstable). 
Round-beam case. v =O.15. A= O.8694. 

Iteration of t he Map 

By starting with a given set of value!f fat the 6 moments 
we iterate the map (7) until it converges or diverges. All re
sults presented here arc for the e+e-c8se, for 110 = 0.15 and 
fJ = 0.07 (,\ = 0.8694). This is aq unrealistically large value of 
6; however , because our model is symplectic in the absence of 
radiation, all our results have a smooth ). -+ 1 limit , and are 
qua!ltitativeiy "imilar for any). sufficiently close to 1 (a large 6 
has the practical advantage of fast convergence of the map it
eration) . Results are shown in Fig. 3. Dots represent chaotic 
behavior, in which the two beams are preferentially of differ
ent size; + represents period- l fixed points, in which the beams 
are of equal otT unequal size, depending oq. the value of p (they 
correspond to the beam sizes shown in Fig. 2); x, 0 and 0 

represent periqd- 2, - 3, and - 4 fixed points with beams of equal 
size. Other types of solutions may well exist, but nre hard to 
find. If more than one solution is possible, the one to which the 
map converges depends on tl1e initial conditions. For p :::::: 0.3 
the chaotic solutions are the most stable. For other values of p, 

generally speaking, the period- l fixed point is the most stable 
unless it coexists with higher-order fixed points. In this case the 
the period- 3 fixed point is the most stable. By "most stable" 
we mean that this solution is the most likely pne to be reached 
when varying the initial conditions. 

The effects of the map can be evaluated by looking at "ob
servables" such as the luminosity or the effective beam-beam 
parameter, which depend on the actual (i.e., dynamically deter
mined) beam si2jes. Thus a quantity that measures the physical 
effects of our model is the "enhancement factor" E defined by 
E;: £/£0 = U~o, 

(12) 

which we plot in Fig. 4 (for the higher-order fixed points, for 
which E varies from turn to turn, we compute its average over 
the period of the most stable fixed point). Note the saturation 
effect due to chaotio behavior and higher-order fixed points. 
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Asymmetric Case 

Recently asymmetr ic colliders have been proposed as high
luminosity "factories" for the study of speci fic particles such as 
beauty mesons [71. \¥e present in the following the results of a 
brief, ongoing and preliminary study of applyiJ?g our model to 
asymmetric coll iders. There are two asymmetries: · the lattices 
can be different, and the be':tms can be di fferent, although we 
sti ll assume that they are round. The rings have tunes "O±, 
damping decrements o± and beta-functions f3± . The bunches 
haye N± particles, energy/mass 1± and nominal emittances fO±· 
The dynamical and nominal beam quantities are 

!,± = 47r(o± (~: ) 2 ,,4;r(± 

, "oN±f3~ a5± ::::: f3±fO±, <,o± ::::: 2 
. 47f

'
=f(Jo± 

(13 ) 

with ai :;;;; f3± (q~J In addi tion, we simulate the effect of the 
longitudinnl dynamics by modulating the tunes according to 
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"O± --f /I± = VO ± + .6.±sin(I/,dn), 
O".,±/I.,± (14) 

6±=--
2f3± 

where Vs± and cr.d are the synchrotron tunes and bunch lengths, 
and n = turn number. 

In order to describe the beam asymmetry we use in what 
follows four quantities: average nominal (~o) and dynamical (0 
beam-beam parameters, and nominal (Ao) and dynamical (A) 
beam asymmetry parameters, defined by 

Ao = ~6+ - ~6-~6 = (~6+ + e6-)/2, 
~6+ + (6-

(15 ) 
A = ( + - ( -( = «(+ + (_)/2, 

(+ + (-
Typically we lise as inputs {o and Ao; thus the nominal beam
beam parameters are given by ~o± = {o(l ± Ao). Obviously 
a corresponding expression exists for the dynamical parameters 
(±. 

Fig. 5 shows ~ V3. ~o for various values of Ao for a collider 
with symmetrical rings with tune L10 = O. 765, ~amping decrement 
6 = 0.005 and no tune modulation, showing a saturation at ~ ~ 
0.07. Although we do not show ~+ and ~_ individually, typically 
~+ grows linearly for all vnlues of ~o, while ~_ grows linearly at 
small ~o, reaches a maximum and goes back down to 0 at large 
€o. There is beam instabili ty beyond ~o ~ 0.14 . 

Fig. G shows the dynamical asymmetry parameter A 113. ~O for 
various. values of Ao, for the same symmetric collider parameters 
as in Fig. 5. Note that the dynamics causes an increase in 
asymmetry (A grows from A = Ao at ~o = 0 to A = 1 at large 
~o ). When A = 1 it means that one beam is strong and the other 
one ·is infini tesimally weak. Note also the spontaneous breaking 
of the symmetry for the symmetric case, Ao = 0, at ~o .<:; 0.12; 
this breaking is as likely to yield A > 0 as it is to yield A < 0, 
but for convenience we show only the first case. 

Fig. 7 is similar to Fig. 6, except that we have added tune 
modulation, which causes seemingly unpredictable changes in the 
dynamical asymmetry A above ~o ~ 0.03. Actually these effects 
occur after many tu rns, on the order of 105; for the first""" 10'1 
:turns the results are similar to those of Fig. 6 (the synchrotron 
period"is'" 19.2 turns). 

Fig. 8 again shows A VJ. {a , this time for an asymmetric 
collider, as the parameters at the right indicate (these corre
spond to APIARY I7!) . Note the competition between the beam 
asymmetry and the lattice asymmetry: at low ~o the dynamical 
asymmetry A deCrea3eJ from its nominal positive value Ao. This 
means that it is the - beam that uwallts" to be the strong one, 
even though it is nominally the weak one. However, at ~o ~ 0.03 
the competition becomes unst able and the dynamics forces the 
beams to a strong-weak st ate (A = ± 1). In fact it is so unst a
ble that which beams becomes strong and which weak depends 
more on the initial beam configurations than the asymmetry in 
the dynamics. 

Conclusions 

For the symmetric case: 

(1) For low beam intensity (small p), only normal (constant, 
equal beam size) solutions exist and are stable, as it should be 
expected. 
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- 1.0 r-I X . , . 0 0 o 1 - ~: Ao =O.,50 
0 0.05 0.1 0.15 

to~ (t,+ +to-)j~ 
Fig. 8 . Same a s Fig . 7, except lhal the ring" as well as the 

beam:; ar~ asymmctriGfll. 

(2) As the intensity is increased, other solutions appear which 
cause the change in behavior oCtIle luminosity from ex: ] 2 to ex: I , 
and the satun~tion of beam-beam parameter at ~o ~ p/2-rr ~ 
0.043. The saturation mechanism js due to the appearence of 
a chaotic region followed by a higher-order fixed point rather 
t.han to a bifurcation. This seems to be a gelleric difference with 
I!i .. al~'s r~sult!2J, 

(3) For a given tune, flip-flop solutions always exist and are 
reaJ in a range of values of p. However, they are not always stable, 
and are unqatural for small p. By this we me¥l tha~ they require 
a delicate relationship between 110 and p, as can be seen from Fig. 
1. Therefore the flip-flop effect may have a natural explanation 
in our moqel only for unrealistiFnlly pig\) be'l-TD intensities. This 
seems to be in qualitative agreement with Hirata's model. It 
should be interesting to decide whether higher-order fixed points 
occur in other models; otherwise they mi,ght be an artifact of 
the linearization of the beam-beam force; These higher-order 
fixeq points pre confirrped by multi particle tracking simulations 
for the linear-force model {BJ. 

For the asymmetric case: 

(1) In the ablicnce of tun~ modulation ~qe beam 8~ymmetry 

grows with intensit( from its nominal value. 

(2) In the presence of tune modul~tion the dYQamical asym
metry seems unpredictable after many turnsj we do not presently 
understand pven the systematics of t'l js bf!hav ior. 

(3) It is pQssible to compensate beam asymmetries with lattice 
asymmetries, bllt the equilibrium reached seems fairly unstable, 
except at low intensities. It should bf; interesting to see whether 
this is also true of more realistic models for the beam-beam force. 
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